Statistical removal of background signals from high-throughput (1)H NMR line-broadening ligand-affinity screens.
نویسندگان
چکیده
NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of protein-ligand interaction at their binding interfaces. While simple one-dimensional (1)H NMR experiments are capable of indicating binding through a change in ligand line shape, they are plagued by broad, ill-defined background signals from protein (1)H resonances. We present an uncomplicated method for subtraction of protein background in high-throughput ligand-based affinity screens, and show that its performance is maximized when phase-scatter correction is applied prior to subtraction.
منابع مشابه
Estimating protein-ligand binding affinity using high-throughput screening by NMR.
Many of today's drug discovery programs use high-throughput screening methods that rely on quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift or line ...
متن کاملIdentification of individual protein-ligand NOEs in the limit of intermediate exchange.
Interactions of proteins with small molecules or other macromolecules play key roles in many biological processes and in drug action, and NMR is an excellent tool for their structural characterization. Frequently, however, line broadening due to intermediate exchange completely eliminates the signals needed for measuring specific intermolecular NOEs. This limits the use of NMR for detailed stru...
متن کاملApplication of NMR and molecular docking in structure-based drug discovery.
Drug discovery is a complex and costly endeavor, where few drugs that reach the clinical testing phase make it to market. High-throughput screening (HTS) is the primary method used by the pharmaceutical industry to identify initial lead compounds. Unfortunately, HTS has a high failure rate and is not particularly efficient at identifying viable drug leads. These shortcomings have encouraged the...
متن کاملNMRmix: A Tool for the Optimization of Compound Mixtures in 1D 1H NMR Ligand Affinity Screens
NMR ligand affinity screening is a powerful technique that is routinely used in drug discovery or functional genomics to directly detect protein-ligand binding events. Binding events can be identified by monitoring differences in the 1D (1)H NMR spectrum of a compound with and without protein. Although a single NMR spectrum can be collected within a short period (2-10 min per sample), one-by-on...
متن کاملFunctional genomics and NMR spectroscopy.
The recent success of the human genome project and the continued accomplishment in obtaining DNA sequences for a vast array of organisms is providing an unprecedented wealth of information. Nevertheless, an abundance of the proteome contains hypothetical proteins or proteins of unknown function, where high throughput approaches for genome-wide functional annotation (functional genomics) has evo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomolecular NMR
دوره 63 1 شماره
صفحات -
تاریخ انتشار 2015